Evidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in Petunia inflata.
نویسندگان
چکیده
For Solanaceae type self-incompatibility, discrimination between self and nonself pollen by the pistil is controlled by the highly polymorphic S-RNase gene. To date, the mechanism generating the allelic diversity of this gene is largely unknown. Natural populations offer a good opportunity to address this question because they likely contain different alleles that share recent common progenitors. We identified 19 S haplotypes from a natural population of Petunia inflata in Argentina, used reverse transcriptase-polymerase chain reaction to obtain cDNAs for 15 alleles of the S-RNase gene, and sequenced all the cDNAs. Phylogenetic studies revealed that five of these alleles and two previously identified alleles form a major clade, and that the 5' region of S(19) allele was derived from an ancestor allele closely related to S(2), whereas its 3' region was derived from an ancestor allele closely related to S(8). A similar evolutionary relationship was found among S(3), S(12), and S(15) alleles. These findings suggest that intragenic recombination contributed to the generation of the allelic diversity of the S-RNase gene. Two additional findings emerged from the sequence comparisons. First, the nucleotide sequence of the S(1) allele identified in this work is completely identical to that of the previously identified S(1) allele of a different origin. Second, in the two hypervariable regions HVa and HVb, thought to be involved in determining S allele specificity, S(6) and S(9) alleles differ only by four nucleotides, all in HVb, resulting in two amino acid differences. The implications of these findings are discussed.
منابع مشابه
The amino terminal F-box domain of Petunia inflata S-locus F-box protein is involved in the S-RNase-based self-incompatibility mechanism
BACKGROUND AND AIMS Pistils of flowering plants possessing self-incompatibility (SI) can distinguish between self and non-self pollen, and only allow non-self pollen to effect fertilization. For Petunia inflata, the S-RNase gene encodes pistil specificity and multiple S-locus F-box (SLF) genes encode pollen specificity. Each SLF produced in pollen interacts with a subset of non-self S-RNases to...
متن کاملSelf-incompatibility in Petunia inflata: the relationship between a self-incompatibility locus F-box protein and its non-self S-RNases.
The highly polymorphic S (for self-incompatibility) locus regulates self-incompatibility in Petunia inflata; the S-RNase regulates pistil specificity, and multiple S-locus F-box (SLF) genes regulate pollen specificity. The collaborative non-self recognition model predicts that, for any S-haplotype, an unknown number of SLFs collectively recognize all non-self S-RNases to mediate their ubiquitin...
متن کاملFour previously identified Petunia inflata S-locus F-box genes are involved in pollen specificity in self-incompatibility.
Dear Editor, Petunia possesses self-incompatibility (SI), by which pistils reject self-pollen but accept non-self pollen for fertilization (de Nettancourt, 2001; Iwano and Takayama, 2012). Genes that regulate self/non-self recognition between pollen and pistil are located at the highly polymorphic S-locus. An S-haplotype contains the pistil-specific S-RNase gene that regulates pistil specificit...
متن کاملInsight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions
S-RNase-based self-incompatibility in Petunia is a self/non-self recognition system that allows the pistil to reject self-pollen to prevent inbreeding and to accept non-self pollen for outcrossing. Cloning of S-RNase in 1986 marked the beginning of nearly three decades of intensive research into the mechanism of this complex system. S-RNase was shown to be the sole female determinant in 1994, a...
متن کاملIdentification of SFBB-Containing Canonical and Noncanonical SCF Complexes in Pollen of Apple (Malus × domestica)
Gametophytic self-incompatibility (GSI) of Rosaceae, Solanaceae and Plantaginaceae is controlled by a single polymorphic S locus. The S locus contains at least two genes, S-RNase and F-box protein encoding gene SLF/SFB/SFBB that control pistil and pollen specificity, respectively. Generally, the F-box protein forms an E3 ligase complex, SCF complex with Skp1, Cullin1 (CUL1) and Rbx1, however, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 125 2 شماره
صفحات -
تاریخ انتشار 2001